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Abstract. Hydrodynamic (Landau) instability in combustion is typically associated with the
onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures
as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability

has recently been shown to occur for critical values of the pressure sensitivity of the burning
rate and the disturbance wavenumher, significantly generalizing previous classical results for this

problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of
hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal

oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic
influence of a non-zero temperature sensitivity in the local burning rate on both types of stability
thresholds. It is found that for sufficiently small values of this parameter, there exists a stable

range of pressure sensitivities for steady, planar burning such that the classical cellular form of

hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each
occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however,

the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber,
pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently
large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that

an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a non-
steady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

1. Introduction

The notion of hydrodynamic instability in combustion originated with Landau's seminal study

of premixed flame propagation (Landau [ 1]). In that work, it was postulated that a flame could

be represented by a surface of discontinuity, with an appropriate density jump across the flame

surface, and the normal equations of hydrodynamics governing the flow on either side of the

flame surface. Assuming that this surface propagated normal to itself with constant speed, it

was then determined through a straightforward linear stability analysis that a premixed gaseous

flame was intrinsically unstable to steady (cellular) disturbances whenever, as is generally the

case, the density on the burnt side of the front was less than that of the unburnt mixture. Since

this result is at variance with experimental observations of steady, planar laboratory flames, it

has sparked numerous other theoretical investigations that have sought to resolve this paradox,
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through both the inclusion of additional effects and the analysis of less phenomenological
combustion models. Today, this specific form of hydrodynamic instability, generally referred

to as Landau instability, plays a central role in the study of flame/flow interactions. Though

Landau's analysis essentially collapsed all thermal effects to the change in density across the

front, Landau instability is nonetheless implicitly associated with the thermal expansion of the

gas arising from the heat release during combustion. Indeed, this instability persists even when
the entire flame structure is resolved (cf Matalon and Matkowsky [2], Pelc6 and Clavin [3]),

although it is now recognized as a predominantly long-wave cellular instability that is subject

to various stabilizing influences for disturbances corresponding to larger wavenumbers.

A related problem briefly addressed at the end of Landau's original study (for which a
more standard and less controversial type of result was obtained), and the one of interest here,

was a modest modification of the flame-propagation problem just described. In this modified

problem, the unburnt mixture was taken to be a liquid propellant while the burnt region again

consisted of gaseous products. The physical existence of a liquid/gas interface led to the
inclusion of additional physics in the model, namely surface tension at the interface and the

influence of gravitational acceleration (downward propagation was assumed). As a result, and
in contrast to strictly gaseous flame propagation, a stability criterion was derived such that the

liquid/gas interface was either hydrodynamically stable or unstable in the Landau (cellular)

sense depending on whether the product of the gravitational acceleration and the coefficient of
surface tension was greater or less than a critical value. This result was later extended by Levich

[4], who considered the effects of (liquid) viscosity in lieu of surface tension and obtained a

similar result for the product of the gravitational acceleration and the viscosity of the liquid.

These classical models of liquid-propellant combustion, despite their relative simplicity, have

long served as seminal examples that correctly describe the onset of (cellular) hydrodynamic

instability in reactive systems.

Although the assumption of a thin reaction region remains a frequently valid and

useful simplification in many combustion studies, the classical assumption of a constant

normal burning rate has long been regarded as a probable oversimplification when applied

to the problem of combustion instability. Early attempts at modification began with the

phenomenological assumption of a linear relationship between the burning rate and the flame
curvature (cf Markstein [5]), while more modem approaches have employed sophisticated

asymptotic methods to analyse the flame structure and to derive formal expressions for the
burning rate as a function of local conditions at the combustion front, for both gaseous
and condensed combustion waves (cf [2, 3], Sivashinsky [6], Margolis [7]). In propellant

combustion, on the other hand, it has long been customary to experimentally measure the

pressure response, or pressure sensitivity, of the burning rate, as well as (to a lesser extent),

its temperature sensitivity. Although asymptotic models that resolve the combustion-wave
structure can be developed, under various approximations, for propellant combustion (cf

Margolis and Williams [8, 9], Bechtold and Margolis [10]), it nonetheless remains true that the

direct assumption of a combustion surface that propagates according to a prescribed burning-

rate law, such as a phenomenological law based on experimental observations, allows one to
circumvent the intricacies of the combustion region and to impose fewer restrictive assumptions

on the hydrodynamic model for the unburnt and burnt regions.

Accordingly, for the case of liquid-propellant combustion, the classical Landau/Levich

hydrodynamic models may be combined and extended to account for a dynamic dependence,
absent in the original formulations, of the instantaneous burning rate on the local pressure

and temperature fields (Armstrong and Margolis [ 11, 12]). Although exact expressions for the

neutral stability boundaries in question can be obtained in specific limiting cases, more general

results may be obtained by exploiting the realistic smallness of the gas-to-liquid density ratio
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p. Thus, neglecting thermal coupling effects, an asymptotic analytical expression was derived

for the cellular stability boundary Ap(k), where Ap is the pressure sensitivity of the burning
rate and k is the wavenumber of the disturbance (Margolis [13]). The results demonstrate

explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect

of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the

instability associated with intermediate wavenumbers for critical negative values of Ap. In the

limiting case of weak gravity, it was shown that hydrodynamic instability in liquid-propellant

combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability

is first manifested through O(1) wavenumber disturbances. It was also demonstrated that,

in general, surface tension and the viscosity of both the liquid and gas phases each produce

comparable stabilizing effects in the large-wavenumber regime, thereby providing important

modifications to the previous classical analyses in which one or more of these effects was

neglected. For Ap = 0, the Landau/Levich results are recovered from the new model in
appropriate limiting cases, although, in the realistic limit of small p, this corresponds to a

hydrodynamically unstable parameter regime [ 1,4, 13].

In addition to the classical cellular form of hydrodynamic stability described thus far, there

exists in this extended model a pulsating form of hydrodynamic instability corresponding to the

loss of stability of the steady, planar solution to time-dependent perturbations (Margolis [ 14]).

This occurs for negative values of the pressure-sensitivity parameter AF, and is thus absent

from the original Landau/l._vich models. Nonetheless, its existence in the extended model

results in a stable band of negative pressure sensitivities bounded above by the classical Landau
type of hydrodynamic instability, and below by the pulsating form of hydrodynamic instability

just described. A stable range of negative pressure sensitivities is applicable, for example, to

certain types of hydroxylammonium nitrate (HAN)-based liquid propellants at low pressures

for which non-steady modes of combustion have been observed, but not otherwise investigated

further (Vosen [15]). While such non-steady combustion may correspond to secondary and

higher-order bifurcations above the cellular boundary (cf Bechtold and Margolis [16]), it may

also be a manifestation of the pulsating form of hydrodynamic instability just described.

In the present work, we explore the effects of incorporating a non-zero temperature

sensitivity into our previous asymptotic analyses in the limit of small gas-to-liquid density
ratios [ 13, t4]. This entails a coupling of the energy equation for temperature to the previous

purely hydrodynamic problem, and leads to a significant modification to the pulsating boundary.

Specifically, for sufficiently large values of the temperature-sen sitivity parameter, this boundary

evolves into a C-shaped curve such that liquid-propellant combustion can become intrinsically

unstable to this newer form of hydrodynamic instability.

2. The mathematical model and its basic solution

The mathematical model was described previously [ 13], but is briefly summarized here for

completeness. In particular, it is assumed, as in the classical models, that there is no distributed

reaction in either the liquid or gas phases, but that there exists either a pyrolysis reaction or an

exothermic decomposition at the liquid/gas interface that depends on local conditions there.

For simplicity, it is assumed that within the liquid and gas phases separately, the various
physical properties are constants, with appropriate jumps in these quantities across the phase

boundary.

The non-dimensional location of the downward-propagating liquid/gas interface as a

function of space and time is denoted by x3 = O's (xt, x2, t), where x3 is the vertical coordinate

and the adopted coordinate system is fixed with respect to the stationary liquid at x3 = -oo.

Then, in the moving coordinate system x = x_, y = x2, z = x3 - _(x_, x2, t), in terms of



616 S B Margolis

which the liquid/gas interface always lies at z = 0, the complete formulation of the problem

is given by conservation of mass, energy and momentum within each phase as

V.v=0 z_0 (1)

800_,30 {1}+v. _70 = V20 z _ 0 (2)
3t 3t Oz X

.0o0v I'} {'}• +(v'_')v=(O'O'--Fr-l)- p-I Vp+ V2v zNO (3)3t Ot Oz )_Pr 8

where v, ® and p denote velocity, temperature and pressure, respectively, Prz and Prg denote
the liquid and gas-phase Prandtl numbers, p, X and c (used below) are the gas-to-liquid

density, thermal diffusivity and heat-capacity ratios, and Fr is the Froude number. These non-

dimensional variables have been defined in terms of their dimensional counterparts (denoted

by tildes) as

O-- _ v = --z- p=--
Za - L f fl_] 2

q,,O ?0 2 _iO
• , -- t = -=-- xi = --=--

(4)

where /) is the reference propagation speed of the interface for the case of steady, planar

deflagration. The non-dimensional parameters, some of which first appear below in the

conditions at the gas/liquid interface, have been defined as

P="z" O'u =":"- ,K=-:- C-------

Pz Ta Zt ct

Fr = ----z- y -- Pr! = =-- Prg = -z-
_X; ffi.;O _.; Xg

(5)

where/_u is the unbumt (liquid) temperature at z = -co and T_ is the adiabatic burnt (gas)

temperature at z = +oo, _ is the coefficient of surface tension for the liquid surface, and _z and

_g are the liquid and gas-phase kinematic viscosities. We note that the inverse Froude number

Fr -l represents the non-dimensional gravitational acceleration and that pXPrg = lzPrt,

where/_ = t2g//_; is the gas-to-liquid viscosity ratio. The non-dimensional mass burning rate

appearing in equation (9) below is defined by A (Pla=o*, Olz=0) = *(/_li_=4;, :F li3=4,,)/fit ff],
and is assumed to be functionally dependent on the local pressure and temperature at the

liquid/gas interface. By definition, A = 1 for the case of steady, planar burning, but

perturbations in pressure and/or temperature result in corresponding perturbations in the local

mass burning rate.

Equations (1)-(3) are subject to the boundary conditions

0 at z = -oo OIz=0- = OIz=0* (6)v=0 O= 1 at z=+c_

and appropriate jump and continuity conditions at the liquid/gas interface. The latter consist
of continuity of the transverse velocity components (no-slip),

h_ x v_=h_ x v÷ (7)
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where v+ = v(z=o_, conservation of(normal) mass flux,

h, • (v_ - pv+) = (1 - p)S(%.)-- (8)
Ot

the mass burning rate (pyrolysis) law,

fi, • v_ - S(_s)--_-- = A(p[z=0*, ®]z=o) (9)

conservation of flux of the normal and transverse components of momentum,

Piz=o- - Plz=0" = h_. [pv+(hs . v+) - v-(fis " v_) - ptPrge+ . h, + Prte- . hs]

o** 3 ro2,,r (o,, 21
+fi,.(v -pv,)S(dps)---_--yS (qb_)[--_-[l+\ Oy ] J

+ Oy--f- \ Ox ] J _xx _y _ (10)

0¢_7_ × pv÷(fi_ •v÷) - v_(_ • v_) + (v_ - pv.)S(_,)-_-[

= fi_ × (p_Pr_e+. _, - Pr_e_ • _) (I I)

and conservation of heat flux

,_,. (¢pXVelz=0. - VOIz=o-) = ;_. [(cp,,+ - v_)Ol_=o + _(o, pv. - v_)]

+[(1 - cp)®lz=o + _(1 - a.p)]S(_)--_ (12)

where _ = c/(1 - _r,,), e is the rate-of-strain tensor (e-_ = elz=0_), Y is the surface-tension

coefficient, a, is the unbumt-to-bumt temperature ratio, and S(_s) and the unit normal h, are
defined as

S(_,) _-- [1 + (O_s/aX) 2 + ('O_/Oy)2] -_/2
(13)

fit = (-O_,/Ox,-a_/ay, t)s(_).

Here, the factor multiplying ?" in equation (10) is the curvature -V • h_ of the liquid/gas

interface in the moving coordinate system, and the corresponding expressions for the gradient
operator V and the Laplacian V 2 in this system are given by

V= ff'x Ox Oz' Oy Oy Oz' (14)

Ox--5+ _ + ,..1+ \ Ox / \ _y l JgYz: - z o_ oxOz

_:,o,,,,,u' o2,,,,,]o
ay ayOz \ ax 2 + ay 2 ,] Oz' (15)

However, the vector v still denotes the velocity with respect to the (x_, x2, x3) coordinate

system.

We observe that the thermal and hydrodynamic fields are coupled through the temperature

dependence of the mass burning rate A appearing in equation (9). When A is assumed to

depend on pressure only, the strictly hydrodynamic problem for p, v and ¢., can be analysed

separately [13, 14]. In the present work, we wish to focus on this more extended coupling

to determine how the hydrodynamic stability boundaries are modified when the local burning
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rate depends on temperature as well. In connection with this we remark that although the mass

burning rate A may be typically decomposed as

a(Plz=o+, ®lz=0) = ,4(pl:=o*, O[z=0) exp[ N(I - cru)(®]_'=° - 1)]
/ or. +dZa-_t__-; J (16)

where A is a rate coefficient and N = _7/R°T. is the non-dimensional activation energy

(_'), this more explicit representation will not be needed in the stability analysis that fotlows.

Instead, our (linear) stability results may be expressed in terms of the pressure and temperature

sensitivities, defined as

aA o=l.p=0 00-_0e=t.p=0 =Ap = -_p Ao = N(1 - au) + ,40 (17)

respectively. However, we note that if the non-dimensional activation energy is large, then the

last of equations (I 7) implies that Ao would likely be larger in magnitude than A p, a fact that

will play a role in the relative scalings introduced for Ap and Ao below.

A non-trivial basic solution to the above problem, corresponding to the special case of a

steady, planar deflagration, is given by

• s0=-t v °= (0,0, v0) vO= {0p-1-1 Zz>0<0

(18)

{eZ z<0 [-Fr-'z+p-'-lz<O®°(z) = 1 z > 0 P°(Z) = -pFr-lz z > O.

The remainder of the paper is devoted to a linear stability analysis of this solution.

3. The complete linear stability problem

Prior to introducing any further approximations, we determine, in a standard fashion, the linear

stability problem and the corresponding dispersion relation (in the form of a system of algebraic

equations) that governs the behaviour of harmonic perturbations about the basic solution (18).

In particular, in terms of the perturbation quantities Cs(x, y, t) = q_,(x, y, z, t) - D°(t),

u(x, y, z, t) = v(x, y, z, t) - v°(z), _'(x, y, z, t) = p(x, y, z, t) - p°(z) and O(x, y, z, t) =

(9 - @°(z) - rps d®°/dz, the problem obtained when equations (1)--(3), (6)-(12) are linearized

about the basic solution (18) is given by

__ Ou2 Ou3Oul+--+--=O zOO
Ox Oy Oz

p -_ -_z -\_x Fr-lOox' Oy

+ pLPrg \Ox2 +-if-7+ OZ2 ] Z%0

p 57+0z = o + o;,

0=0 at z=-oQu=0 0=0 at z=+_

--+{_} Fr-lO_'Oy' O_Oz)

(19)

(20)

z X 0 (2_)

olz=o, - o1_=o-= _P, (22)
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ullz=o- - ujlz=o_ = (p-i _ 1)_ (23)
ox

U2lz=O- -- u2lz=o. = (p-I _ 1) 0_b_
0--)-- (24)

04,_.
U3Iz=0- -- PU3Iz=0÷ = (1 -- p) 0"-7- (25)

04',
U3lz---o- at -- Av_lz=o. + A_-_O[¢=o. (26)

¢lz=o-- _'lz=O*= (2 - p)ujlz=o. - u3lz=°- + ZPr'OU3 lz=o _ - 2plPrg au3 lOz] '
Oz Iz---o*

_,Ùx2 + -ffTy2/ (27)

Ox z=o'/ \ az + Ox z=o-/

= (p-' - 1)°-__" +u_Iz=o.- u,rz--o- (28)
ax

(Ou2 Ou3 I )_Prt(au21 au3J )plPrg\ az z=o, + 0-)-- z=O* \-_-z Iz=O- + 0-_ z=o-

= (p-i _ 1)_yS + U2lz=O÷- u2lz=.O_ (29)

_s = e iwt+iklx+ik_y

= ei_Ot+iklx+ik2y [ bl ekz - Fr-I z < 0
I bz e-kz - pFr -J z > 0

Ul = eiWt+iklx+ik2y [ b3 eqz - ik_(iw + k )-I ble kz

! b4e rz ikl(io)p - k)-lb2e-kZ

u2 = e i°_t+iklx+ik2yI b5eqz - ikz(im + k)-_ble _z
[ b6e rz - ik2(kop - k)-tb2e-kZ

U3 = e iwt+iklx+ikL_' I bTeqz - k(ko + k)-Jble kz

I bse _z + k(iwp - k)-lb2e -kz

[9 _- e iwt+iklx+ik2y

z<0

z>0

z<0

z>0

z<0

z>0

I b9e pz - [ioJ + k 2 - q(q + 1)]-lb7elq +l)z
+k[(iw) 2 - k2]-lb_e(k+l)z

bloe sz

z<0

z>0

(31)

(32)

(33)

(34)

(35)

(36)

O0 O0 I

cpL-g--oZz---o* az tz=O- - cOlz=o. +0lz=o- = cpu3lz=o. - (1 + _)u3lz=O_

Ocb,
+0 +_(1 - o)] a-_- (30)

where _ -- c(1 - a,) -1 .

Non-trivial harmonic solutions for q_, u and _', proportional to e iwt+ik,x+ik2y, that satisfy
equations (19)-(21) and the boundary/boundedness conditions at z = ic:_ are given by
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where we have normalized the above solution by setting the coefficient of the harmonic

dependence of 4_._to unity. Here, the signs of kl and k2 may be either positive or negative

we have employed the definition k = _/k_ + k2, and p, q, r and s are defined asand

2p= l+v/]+4(iw+k 2) (37)

2Prt q = 1 + _/1 + 4Prl(ioo + Prl k 2) (38)

21.zPrt r = 1 - _/1 + 4#Prt(icop + t.zPrl k 2) (39)

2pXs = 1 -- _/1 + 4p2X(iw +_.k 2) (40)

where we have used the fact, noted below equation (5), that p),.Prg = l,zPrt.

Substituting this solution into the interface conditions (23)-(30) and using equation (19)

for z X 0 yields 11 conditions for the 10 coefficients bl-blo and the complex frequency

(dispersion relation) ico(k). In particular, these conditions are given by

iktb3 + ik2b5 + qb7 = 0 (41)

ikj b4 + ik2b6 + rb8 = 0 (42)

ik, ikl _kb2 = (l_ l)ikL (43)b3 iw+kbl -b4+ iwp--

b5 - i-w---_bt - b6 + iwp--- -kbZ = - 1 ik2 (44)

k pk

b7 - ]og+ _bl - pb8 iwp-- k b2 = (1 - p)iw (45)

kbJ - Apb2 - AebLo = iw - pFr-l Apb7 - -- (46)
ioo +

1 + iw+_(2kPrt - I) bl -- 1 + 7(.Op

+(1 - 2Prt q)b7 - (2 - p - 21.zPrt r)b8 = (1 - p)(Fr -1 - iw) + yk 2 (47)

• ikl ,
(l_Prt r - l)b4 + (2kl_Prt + 1)_t_2 + ikl#Prt b8

.. ikl
+(1 - Prt q)b3 + (2Prt k - l)_bl - ik_Prtb7

.. ik2
(# Pr! r - 1)b6 + (2k lz Prt + I)iw-__ kb2 + ik21xPrl b8

.. ik2
+(1 - Prt q)b5 + (2Prt k - I)i--w-_bl -- ik2Prt b7

blo - b9 + [io.) + k 2 - q(q + 1)]-lb7 - k[(iw) 2 - k2]-lbl = 1

[ q+, ](1 -c+cpXs)blo-pb9+ iw+k 2-q(q+ 1) +1 +_ b7

k [k+l ] _pk-- +1+ _ bl - cpb8
ico+k iw-k

= (1- 1)ikl (48)

= (1-- 1)it2 (49)

(50)

b2 = 1 +iw[l +_:(I - p)l.
iwp - k

(51)
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While the above problem is linear in the coefficients bl-b8, the relationship for iw is highly

nonlinear. Accordingly, we seek asymptotic solutions for the neutral stability boundaries in

the limit that the gas-to-liquid density and viscosity ratios p and/z are small, as is Fr -I in

the case of reduced gravity. We shall also introduce appropriate scalings for the sensitivity

parameters Ap and Ao, where the limiting results for Ao = 0 were derived previously [ 13, 14].
In particular, we introduce a bookkeeping parameter E << 1and consider the realistic parameter

regime

p = p*E lx = #*_ Fr -l = [
g O(1)

(52)
g*E _ O(E)I

where the upper (lower) choice for Fr -1 corresponds to normal (reduced) gravity. We note
that based on characteristic densities for liquid propellants and product gases at elevated

temperatures, a realistic value for E is on the order of 10 -3 or 10 -4. In this parameter regime,
it was seen that the appropriate scaling for Ap to describe the neutral stability region was

Ap = A_, whereas the appropriate scale that describes the fully developed effects of thermal

coupling turns out to be Ao = A_ 1/4, as shown in section 6 below. Thus, we observe that

Ao/Ap _ O(C 3/4) > 175, which is at least several times as large as typical values of the non-
dimensional activation energy N, but still consistent with the last of equations (17). However,

as shown in section 7, the first significant effects of thermal coupling are in fact felt on an

intermediate scale Ao _ O(_1/2), in which case Ao/Ap _ O(E -1/2) > 30, which is a quite

typical value for N. Thus, the parameter regime of interest for describing modifications to the

hydrodynamic stability boundaries arising from temperature-sensitivity effects coincides with

realistic values of the sensitivity coefficients.

4. The inviseid limit

Although both liquid and gas-phase viscous effects were shown to be comparable in general

to those due to surface tension when thermal coupling was neglected [13, 14], the qualitative

nature of the cellular boundary remains preserved in the zero-viscosity limit, as does the

existence of the pulsating boundary. Accordingly, we shall, for simplicity, first consider

the effects of thermal sensitivity on hydrodynamic stability in the inviscid limit, reserving

consideration of thermal coupling in the more algebraically involved viscous case for a

future study (part II). In particular, before introducing the scalings indicated above, we first

set Prl = Prg = 0. Consequently, since q _ _ according to equation (38), we set
b3 --=-b5 = b7 = 0 in equations (33)-(35), and observing that equations (48) and (49) then

reduce to the no-slip conditions (43) and (44), we thus eliminate equations (41), (48) and (49)

from the above set. Using the fact that r _ -iwp, the solution for the remaining coefficients

in terms of ico is given by

b8 = k(1 - p)2[(iw)2p +k 2] +p(1 - p2)Fr-lk + p(1 + p)yk 3 (53)
2p(imp - k)(icop + k)

iw+k r .

bt -- (i--_---_p)k2 [0w + k)(l - p)k - p(iwp - k)b8] (54)

b2 -- _lP-k2[(iwp-k)(l - p)k + p2(iw+k)bs] (55)p( p)

wpkl , mpk2 ,
b4 = -'708 b6 = -k5---o8 (56)
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[ p(iwp-k)(iw+k) ]
(iwp - k)2(l - p) + b8Aobm = A t, pFr -I +

p(l + p)k -(I + p-P_

(1 - p)k - 2icop p(icop - k) L
+ 1+p 0 +-pSk-8 (57)

(iw + k)(1 - p)k - p(iwp - k)bs
b9 = bl0 - 1 + (58)

(1 + p)(iw - k)k

Substitution of these results into equation (51) then gives a single implicit equation for iw

given by

1 - pl'iw+k ][c(pks - 1) + 1 - p]blo - l---_p [i---_-__k (e - k - 1) - (1 +k+ ap)iw - k

+ p Fiwp - k - - k)]bs=--=, /-:---= (p - k l) (io p-
(1 +p)tCk lW- K J

= 1 - p+iw[1 +_(1 - p)] (59)

where bs(iw) and bl0(iw) are given explicitly by equations (53) and (57), provided Ao _ 0.

Equation (59) is thus the dispersion relation that determines the neutral stability boundaries
in that case. In the limit Ao _ 0, the dispersion relation is given by setting the right-hand

side of equation (57) to zero, in which case equations (58) and (59), which are then decoupled

from equations (53)-(57), determine b9 and bl0. Alternatively, we may solve equation (59)

for bm(iw) and substitute this result into equation (57), which then becomes the dispersion

relation for arbitrary Ao. We remark that the special case Ao = 0 yields an analytically

tractable solution for the neutral stability boundaries [12], but since all other results to be

presented are obtained for the parameter regime defined by equations (52), we shall restrict

ourselves to this regime for this limiting case as well.

5. Hydrodynamic stability boundaries in the limit At = 0

In the limit At = 0, the results obtained from the dispersion relation (57) in the parameter

regime (52) are as follows [13]. First (see figure 1), the pulsating hydrodynamic stability

* = -p* for all disturbance wavenumbers (theboundary is given, to leading order in E, by mp

exact relation is given by Ap = -p*/(1 - Cp*)), with instability occurring below this critical
value. For the cellular stability boundary, the corresponding leading-order expression depends

on the magnitude of the wavenumber k. In particular, there are three wavenumber scales to be

considered; the O(1), or outer, scale k, a far outer scale kf = kE, and an inner scale defined by
either ki -= k/E if Fr -1 " O(1) or ki = k/E 2 if Fr -1 "_ O(E). In each of these regions, the

cellular stability boundary, on which the complex frequency iw is identically zero, is given by

, _A;(O) _. I •Ap -- _p (60)

ap _ A*pII) " ½p*(p*ykf - 1) (61)

and

ApO.) ., [ p*(p* g -- ki)/2kiA *p I p*(p *g* -- k_)/2k_

Fr -I "_ O(1)
(62)

Fr -1 _ 0(_)

respectively. Matching these solutions to one another, a uniformly valid composite expansion

A*o(C)(k) in the region Ap < 00he basic solution can be shown to be unstable for Ap > O)
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HYDRODYNAMIC STABILrI't' BOUNDARIES (p << I)

lnviscid Cue (P = O)

unstable k (_'7)".o)

2 3 • 5 6 ? 8 11

!

unstable (cellular) o'

...................... p,r-t .. O, 7=0 ca=O
................................................................ T.............

_" _-' -7,-0 _-0

stable

unstable (pulsating)

Figure 1. lnviscid hydrodynamic stability boundaries in the limit of zero thermal coupling

(Ao = 0).

may be constructed as

A*p (c)'_ A*p(i) + A'p(°)+ A_ (f)- lira A*p(i)- lira A*p(f)
k_ ---*oo k / --, O

I • { Ep*2g/2k Fr -1 ".. O(1) (63)-_1o +½Ep*2yk+. E2p.2g./2k Fr -I _O(E)

where the definitions of ki and kf have been used to express the final result in terms of k. We

note that this asymptotic result, exhibited in figure I, is far simpler than the exact result [12],

which, in our present notation, is given by

. = p. p*_(1 -- p*E)Yr -1 + p*Eyk 2 - (1 - p*E)k
Ap p*2E2(3 - p*_)Fr -l + p*2_2yk2 + (! - p*_)(2 - p*E)k <_ 0 co = 0. (64)

It is thus easily seen from figure 1 that there is a stable region between the pulsating and

cellular stability boundaries for Ao = O, and this result is preserved (in fact, enhanced) when
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viscous effects, which play a stabilizing role with respect to both boundaries for sufficiently
large wavenumbers, are included in the analysis [13, 14]. We observe that for the Landau

(cellular) form of hydrodynamic instability, gravity and surface tension are stabilizing with

respect to sufficiently small and sufficiently large wavenumber disturbances, respectively. The

essential difference, as illustrated in figure 1, between the normal and reduced gravity limits

in the realistic parameter regime considered here is that in the latter instance, gravity is only

capable of stabilizing disturbances whose wavenumbers are very small, O(E2), whereas in

the former case, gravity is sufficiently strong to stabilize disturbances whose wavenumbers

are O(_). As a consequence, hydrodynamic instability becomes a long-wave instability

phenomenon in the reduced gravity regime considered here, since, from equation (63), the most

unstable wavenumbers are O(v'_-), rather than O(1), in that case. We remark that although

positive values of the pressure sensitivity Ap are hydrodynamically unstable, zero and negative

values of Ap over certain pressure ranges are, in fact, characteristic of the so-called 'plateau'

and 'mesa' types of solid propellants (cf Timnat [17]), as well as for the HAN-based liquid

propellants mentioned above [ 15].

b 8

where

6. Hydrodynamic stability boundaries for Ao > 0

Retaining the parameter scalings introduced in section 3, we first consider the O(1)

wavenumber regime. For the case Ao = 0 considered previously, it turns out [14] that

the appropriate expansion of the dispersion relation iw(k) is of the form

iw _ E-1/2(io90 + Et/4iwl + El/2iw2 + ...) (65)

where the leading-order term was suggested by the explicit results available for the inviscid

case, and the expansion in quarter powers of E is suggested by the leading-order term in the

resulting expansion for p given below. We now introduce the scaling Ae = e"A_, where the

value of n _> 0 is to be determined so as to give a non-trivial modification in the dispersion

relation at the appropriate order, corresponding to the first effects of a non-zero temperature

sensitivity on the neutral stability boundary for O(1) wavenumbers.

Substituting equation (65) and the various scalings into equations (37), (40) and (53),

expanded forms for p, s and b8 are obtained as

P _ P0 f-l/4 + Pl + P2¢ I/4 +... S _ O(e t/2) (66)

(ico0)2p * + k 2
E- I _ k (icoo)(iwl)E_3/4 _ 1 [(iw2) + 2(io90)(iw2)]__ U2 +--. (67)

2p*k 2k

Po = (iwo) '/2 Pl = ½[iwi/(iwo) u2 + i]

P2 = ½(iw0)-l/2[l + 4k2+ 4iw2 - (iwl)2/iwo].

Consequently, from equations (57) and (67), bl0 has the expanded form

A'{ Ibl0 _-" - -p k__ + [(ico0)2p * -- 3k2]_:1/z +...
A_ p*

+ --, --_-_[(iwo)2p * -- k 2] - (ia,_)(io,l)_ I/4A;.
/9* "

-n (0) h(l)_:l/4 a_ h(2).: 1/2
"_ E [bl0 + Ul0. T vi0. +''' ]

(68)

(69)
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which, when substituted into the dispersion relation (59) along with the other expansions
deduced thus far, yields a sequence of equations for the determination of the coefficients in

the expansion (65). Thus, at leading order, O(E-"-I/4), equation (59) yields h <°) = 0, which,
Vl0

.(0)
from the implied definition or o j0 in equation (69) above, gives

1 [(iwo)2p , _ k2 ] = 0A_k* 2k

or

(iw0)2 = F (2A; +p*).

(70a)

(70b)

Consequently, iwo is identically zero for Ap = -p*/2, which corresponds to the leading-

order hydrodynamic cellular boundary (60) in the O(1) wavenumber regime when A_ = 0.
Values of A_, > -0*/2 imply cellular instability, since in that case there exists, according

to equation (70b), a root of the dispersion relation such that Re{iwo} > 0, Im{iwo} = 0.

On the other hand, the stability of the region Ap < -p*/2 is still indeterminate, since
equation (70b) indicates that Re{iw0} = 0 there. Hence, the next non-trivial term in the

expansion of iw is required to determine whether this region is stable or unstable, although the

fact that Im{iw0} _ 0 implies that disturbances have a pulsating character for values of A_
below the cellular stability boundary.

At the next order, O(C"), in the analysis of the dispersion relation, the equation bl_)) = 0

is obtained, whence the definition of bl_)) in equation (69) implies that iwl = 0. Proceeding

with the next higher-order equation obtained at O(E -"÷l/4) from the expanded version of

equation (59), it can be seen that terms other than those proportional to A_ -j will appear
i

provided the choice n = _ is made. In that case, collecting terms of O(E °) and using the

previous results t,c0) t,(_) = 0 leads to the equation_10 _ _10

_ L(2) 1 r 2 •
--l,,OVlo +2k -- _--_[(iwo) p +k 2] = 0 (71a)

which, upon using the definitions of Po and b(12o), may be solved for io,,'2as

2-_,k [(io)0)zP *- 3kZ][A; + p* +kA*o(io_) -3/2]iwl

= p,-----_(a*pk_ p*)[a_ + p, + p,3/2k_l/2A,e(2A, p + p,)-3/4] (71b)

where the expression (70b) for iw0 has been used to obtain the final equality. It is readily seen

that for A e = 0, Re{iw2} = 0 for At, < -p*/2. That is, as described in the previous
section, there exists, since Im{iw} _ 0, a pulsating neutral stability boundary that lies below

the cellular boundary such that the region between the two, namely -p*/2 < A_, < -p*, is

stable [Re{iwz} < 0], and the region below the pulsating boundary is unstable [Re{io.,,2} > 0].

For A m > 0, the pulsating boundary is modified. In particular, in the region A_ < -0*/2
below the cellular boundary, the principal value of the complex factor in equation (71 b) may be

written as (2A_, + t9")-3/4 = [-(2A_ + a*)]- 3,4e-ai,_/4 ' and thus Ihe neutral stability condition
Re{io)2} = 0 is given by

Ap+p** - }_/_p, V2,.-1/2_,_ _ _ol-_'-"rr,.., ,,, + r,*)]-_/_ = 0. (72)

Writing A*p = -p* +_tp*/2, where h represents llw de_ iafion, in units ofp*�2, in the pulsating

stability boundary fr<,ji! itq value in th,._ 7c:t,-!llcrmtd-_:cH_;ilivity limit A* = 0, the condition' -O

(72) becomes h - _,/_/,* -_/_I, I :,4L,(i .. ,_.-_/4 = {k c,vcquivalenily,

fi_(l-- ?f!; --- 4_ ,_ Ik :_1(1!. (73a)
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Equation (73a) is an implicit expression for the pulsating stability boundary fi(k), where the

value fi = 1 corresponds to the cellular boundary and fi = 0 is the pulsating boundary for

A_ = 0. Alternatively, writing A_ = (-0"/2)(1 +/_), where/_ = 1 - h is the negative

deviation, in units of 0*/2, from the cellular stability boundary Ap = -p*/2, equation (73a)

can be rewritten in terms of/_ as

/_3(1 _/_)4 = 40.-lk-ZA,e4 (73b)

where/_ = 1 (/_ = 0) corresponds to the pulsating (cellular) boundary in the limit A_ = 0.

A plot of k(/_) for several different values of A_ is shown in figure 2, which, when rotated by

-90 ° so that the k-axis is horizontal, is readily interpreted in the context of figure 1, the lines

Ap* = -0*/2 and Ap* = -p* in that figure corresponding to/_ = 0 and 1, respectively, in
figure 2.

Referring to figure 2, it is seen that for A_ > 0, the pulsating boundary becomes C-shaped

(in the rotated frame of reference), the upper branch approaching the cellular boundary _ = 0

as k --+ oo, and the lower branch approaching the original (A_ = 0) pulsating boundary b = 1.

These same limits are approached for any fixed value ofk as A_ --+ 0. The portion within the

C-shaped curve is the stable region, and thus not only is steady, planar burning intrinsically
unstable for sufficiently small wavenumbers, but, for finite values of k, any crossing of the C-

shaped boundary from the stable to the unstable region corresponds to the onset of a pulsating

instability. As A_ increases, the turning point of the C-shaped pulsating boundary, which

occurs at/_ = /_c = 73-(i.e. at Ap = -5p*/7) corresponding to the critical wavenumber

k = kc = _(21/p*)l/2A_ 2 _ 21.83 A_2/p *'/2, shifts to larger values ofk as Z_ increases.

On the other hand, as A_ becomes small, the turning point shifts to small values ofk such that
k_ eventually leaves the O(1) wavenumber region for which equations (73) are valid. Thus,

as A_ becomes small, the original pulsating and cellular boundaries are recovered in the O(1)

wavenumber regime, but as A_ becomes large, the original cellular boundary lies within the
unstable region for O(1) wavenumbers, and the basic solution becomes intrinsically unstable

to oscillatory disturbancest.

A composite asymptotic solution for the neutral stability boundary in the regime Ao
O(e 1/4) is thus obtained by matching the cellular and pulsating boundaries in the far outer

wavenumber regime, where the former is given by equation (61) and the latter is given trivially

by A_ = -p*, with the appropriate solution branch of equation (72) in the O(1) wavenumber
region. In particular, we denote the two solution branches of equation (72), which correspond
to the portions of figure 2 that lie to the left and to the right of the minimum at/_ = /_c,

by A*p_°.")(k) and A*p(°.t)(k), where the superscript 'o' denotes, as before, the outer, or O(1),
wavenumber region and the superscripts 'u' and '1' denote the upper and lower (rotate figure 2

by -90 °) portions of the double-valued pulsating boundary A*p(k). These branches are given

implicitly by equation (73b), where, by definition,/_ = -(2A'pip* + 1). Along the upper

branch, A*p(°,u_ --+ -p*/2 (i.e./_ _ 0) as k _ oo, which can be matched with equation (61)

since, from equation (61), Ap _f) _ -p*/2 as k/ _ 0. Similarly, A*p(°'t) --+ -p* (i.e.

/_ --+ 1) as k --_ oo, which clearly matches the pulsating boundary Ap* = -p* in the far outer

wavenumber region. As a result, a leading-order composite stability boundary spanning both

_" These results correct an erroneous conclusion drawn in a previous study [12], where an algebraic error in a similar,

but less formal, calculation incorrectly suggested that the pulsating boundary recedes (to more negative values of A_)
as A_ increases, leaving the cellular boundary unaffected.
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the outer and far outer wavenumber regions is given by

,_ [ a*p(°'U)(k) + _p*2yk/2 A*p >_ -5p*/7Ap(k)
A*p(°3)(k) Ap <<,-5p*/7 (74)

t

where the second term in the top expression has been expressed in terms of the outer

wavenumber variable k. This composite boundary is shown in figure 3. We note, based

on the above construction, that the lower branch of equation (74) is a pulsating boundary for
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Figure 3. Composite hydrodynamic stability boundary for Ao _ O(E 1/,*). A_ = 0.5, p* = y =

1, E = 0.005.

all wavenumbers, whereas the upper branch transitions form a pulsating boundary for O(1)

wavenumbers to a cellular boundary for O(_-1) wavenumbers. Indeed, from equation (70b),
we observe that in the outer wavenumber regime, the size of the upper region of oscillatory

instability, which is bounded below by the upper branch of the pulsating stability boundary

and above by the region of non-oscillatory instability beyond the old cellular boundary

At, -p*/2 for A o = 0, shrinks to zero as k becomes large.

7. Evolution of the pulsating boundary for A_ ,_< 1

The nature of the evolution, as A_ decreases, of the pulsating stability boundary depicted in

figure 2 to that shown in figure 1 for the case of A_ = 0 may be determined by analysing the
dispersion relation for smaller order-of-magnitude wavenumbers and appropriately rescaled

values of Ae. In particular, the results (70b) and (73b) suggest that if we consider k "-- O(Ea),

then A_ "-_O(_ a/2) and iw0 _ O(C), where the latter imply that Ao and iw are O(E aa+l)/4)

and O(E<2_-1)/2), respectively. A preliminary analysis then suggests that qualitative deviations

from the C-shaped nature of the pulsating boundary exhibited in figure 2 occur for wavenumbers
of order E_/2, which is another intermediate wavenumber scale that lies between the inner and

outer wavenumber regions that were defined in the previous section. The above analysis is
thus repeated for k = _:E]/2 and Ao = ,4eEl/2 the other parameters remaining unchanged

from their previously assumed orders of magnitude. Consequently, in place of equation (65),

a solution for the dispersion relation is now sought in the form

iw _ id)0 + El/4idgl + E1/2i_2 + • • • • (75)
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Substituting equation (75) and the new scalings introduced above into equations (37), (40)

and (53), the new expanded forms of p, s and b8 are given by

P _/)o + fil El/4 +/)261/2 +'" S _ O(E) (76)

1 1 .^2 +2(i_o)(i<_2)]Eo +. (77)b8 (it_)2p, +_2 -1/2 _(id,_o)(iffh)E-U4 _._[(io91) ..2p*k _ -

where

/3o = ½[1 + (id,,o) 1/2] /)1 = ¼i_, (1 + 4it7)o) -1/2 /)2 = _i_(l + 4id)o) -1/2. (78)

As a result, equations (57) and (67) give the corresponding expansion of blo as
^

}610 .oA;[±+ _ +
ao/P* _ "'

+ -r-- - [(id__)2O, _/_2] _ (id)o)(idh)e 1/4
,40

+p* [itbo 2(iff)o)(i_2)]_ 1/2 }_ LT {(i_o)2p* - 3_2} - (irD,) 2 - +...

,_ _,(o) _.(1),_114 t?,(2).1/2
vlo+_10 _ +_1o _ +'". (79)

Substituting these expansions into the dispersion relation (59), one obtains from the leading

O(E °) terms in that equation the result/_(1 °) = 0, or, according to equation (79),

(i_0) 2 = _- (2A; +p*). (80)

Comparing equation (80) with equation (70b), it is thus seen that the same leading-order result

is obtained for id)o(/_) for Ao _-- O(E U2) as was obtained for iwo(k) for Ae "" O(E1/4). In

particular, iff)o is real and positive for A n > -p*/2, and is pure imaginary for At, _< -p*/2.
Thus, the prediction of cellular instability is recovered in the former case, but stability in the

latter region can only be ascertained by calculating the next non-trivial term in the expansion
(75).

Collecting terms of O(E 1/4) in the expanded version of equation (59), it is concluded that

/_0) = O, which, from equation (79), implies that kbl 0. Proceeding to the next order, we10 _-

collect terms of O(E i/2) in equation (59), which gives rise to the non-trivial equation

^ ( 1 -/)°) =0 (81a)/_(12)(1-- c --/30) + (2/_ + p*b_ °)) I + i---_-7

where, from equation (77),/_0) = -(ir3o)(id)2)//_. Upon substituting the expressions for/_1_ )
and (i&,o) 2 from equations (79) and (80), we obtain the expression for kb2 as

Aop.2" { 1 + 2i_o - v/1 + 4i¢2_o"] ]
1-- _c----x_--+4 _ /J (816)ieTy2 k(Ap p*)[A*p + p*

_(2A; +p')

where it.b0 = (k/p*)(2A_ + p.)l/2 = (k/p*)[-(2A_ + p*)]l/2ei'_/2, the second equality

denoting the principal root when Ap < -p*/2. The expressions (81b) and (71b) for the

two growth-rate corrections id._ and ia_ in their respective wavenumber regimes collapse to

the same result in the limit of zero thermal sensitivity, yielding the same pulsating stability
boundary At, as before. However, for non-zero ,4o, the forms of these two results

differ, leading to qualitative differences in the corresponding neutral stability boundaries. In
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particular, it will be shown below that the pulsating neutral stability boundary obtained from

equation (81b) approaches that shown in figure 1 (i.e. Ap = -p*) in the limit of zero thermal

sensitivity, whereas it approaches the form shown in figure 2 as .4o becomes large. That is,

the evolution between these two limiting forms occurs on the O(E 1/2) wavenumber scale for

O(E 1/2) values of the thermal sensitivity parameter Ao.

Setting the real part of i_ to zero, the equation governing the (pulsating) neutral stability

boundary A*p(k) in the present wavenumber regime is determined from equation (81b) as

/_Op .2 { 1 + 2id-,0 - Vff + 4id_o }* Re = 0 (82)
Ap + p" fc(2A; + p*) l_c -

which, since ida) depends on Ap and/_, is a highly nonlinear equation for A_(/¢). Thus, in

order to determine the nature of the stability boundary as a function of ,4e, it is useful to

consider certain limiting cases. We first consider possible solutions of equation (82) in the

large (scaled) wavenumber regime f¢ >> 1. In that limit, we observe from equation (70b) that

ida_ _ O(f¢) >> 1, and thus a first approximation to equation (81) in this regime is given by

* "4°P'2 Re{- iv/_ } _ 0 (83a)
Ap + p* fc(2A_ + p*)

or, using the expression for the principal root id.,0given below equation (81b),

A*p+ p* - Ix/r2p*312k-l/2Ao[-(2a; + p,)]-3/4 ,-., 0 (83b)

which, since k-t/2,J,o = (k/EI/2)-U2(Ao/_ 1/2) = k-l/2(Ao/_ 1/4) = k-1/2A_, is identical

to equation (72). According to the discussion of equation (72) above, the turning point in the
corresponding neutral stability boundary exhibited in figure 2 occurs at the value kc cx A*e2.

Thus, we conclude that equation (83b) is a valid approximation for equation (82) in the large
(scaled) wavenumber regime/_ >> 1 provided _2 >> 1, where the latter is a necessary condition

to ensure that f¢ is l_ge everywhere along the stability boundary described by equation (83b).
For such values of Ae, the pulsating stability boundary, for large f¢ approaches that illustrated
in figure 2 (with k replaced by f¢ and A_ replaced by Ao).

In addition to the boundary described by equation (83b) and figure 2 for large f¢ and

._,o, there is another pulsating branch that is present for small wavenumbers, as suggested

by the observation that there exists a solution of equation (82) such that A_ --* -p*

as k --* 0, irrespective of the magnitude of/ie. To simplify the analysis and further

discussion, we mainly consider a simplified form of equation (82) by restricting further
consideration to the reasonable limit in which the heat-capacity ratio c is small. Since

1 + 2id.)o - v/] + 4idJo = (1 - v/_ + 4id-_o)2/2, a first approximation to equation (82) in that

limit is given by

 iop .2
Re{ZT+4i o- } c- O (84)

Ap"+ p* + 2fc(2A_, + p*)

which clearly gives the same limiting approximation (83a) for large/c. To analyse equation (84)

for arbitrary/_, it is convenient to convert it to an alternative form as follows. Writing l + 4id._

in the polar form l + 4id._0 = rcosO + isinO, where r 2 = l + 16d_02,COS_ = l/r and

sin 0 = 4d__o/r, equation (84) may be rewritten as

2_(A; + p')=/¢.4o[_/I[(I + 16¢_) t/':' + I]- I] (85)



(a)

40

_S

Pulsating hydrodynamic instability in a Landau/Levich model: 1 631

Pulsating Stability Boundary

ao= I

I i
/

! =,. /

unstable

, . i I
0.2 0.4 0.6 0.8

(b ) Pulsating stability Boundary

/[ Ae = 2/3

'°ii

1s \ /

um'_b/e

_--- _/¢
0.2 0.4 0.6

/
stable /

/

0.g

Figure 4. Pulsating hydrodynamic stability boundaries for k = kE I/2 _ O(E 1/2) and decreasing
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expansions of the upper boundary for/to >> 1,/_ >> 1. (a) ,4e = 1; (b) A8 = _; (c) Ae = 3;

(d)/,o = ½,(e)/,o = ¼:_')/,o = _.

where, from equation (80), _b2 = - (/_/p*)2 (2A _ + p*). Substituting this expression for cb02into
equation (85) and rearranging/squaring the latter twice so as to remove the fractional powers,

a polynomial equation for the inverse relation _:(Ap; .J,o) is obtained as

4_¢3(2Ap + p,)3(A p + p,)4 _ 8_2p.2 _(9(2A; + p,)Z(a _ + p,)3

^ *4 ^2 *+k[5p A_(2Ap+p*)(A*p+p*)2+p*6/l 4] p*6A_(A*p+p*)=O (86a)

or, introducing b = -(2A*Jp* + 1) as before,

]_3/_3(1 __ _)4 + 4/_2,_0/_2(1 _/_)3 +/_[5,4_/_(1 -/_)2 _ 4,_4/p.] + 2/_3(1 _/_) __.0. (86b)

An even more compact version is obtained by defining k =/_(1 -/_)/_/A,o, giving the cubic

equation

/¢3 + 4k 2 + (5 - a)k + 2 = 0 (86c)

where a(/_) = 4,4_/[p*/_(1 _/_)2]. However, since it is the relation A_(/_; ,4_), or equivalently,

_'(/_; ,4e), that is ultimately desired, we shall mainly consider the form given by equation (86b).
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Figure 4. Continued.

In the regime ,40 >> 1 there exists a solution ,(: _ O(,4 g) as suggested above. More

precisely, this solution of equation (86b) may be sought in the form

_: _ .42o(/_0 + ,4_1kl + ,_)2k2 +... ) (87)

whence, upon substitution of this expansion into equation (86b), the coefficients /_i are

determined recursively as

/¢0= 2/9-3/2(1 --/_)-2/, O* I/2 ]_l = --2/7-|( 1 --/_)-1 .... (88)

As expected, the leading-order approximation/_ _ A_/_0 is identical in form to the result (73b)

and the next term in the above expansion thus provides anegative correction to this result. On
the other hand, for large .'to there also exists a solution k << 1 of the form

_ Ae I (/(0 + A_lkz +/i_)2k2 +"" ). (89)

Substituting the latter into equation (86b), the ki are also determined recursively as

/_0 = p*(1 -/;)/2 ;1 = 0 ;2 = 5,o'2/_( 1 -/;)3/8 .... (90)

where the last of these provides a positive correction to the leading-order approximation

/_ _ (2,J,(-))-lp*(l -/_). Although the branches described by equations (87) and (89) were

obtained for ,_o >> 1, they remain reasonably accurate representations of the actual branches
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even for O(1) values of this parameter, as shown in figures 4(0) and (b) (discussed immediately
below).

As Ao decreases through O(1) values, the turning point in the stability boundary for large
,_ occurs for smaller values of k, and eventually the expansion for large k ceases to be a valid

approximation of equation (86b). Simultaneously, the branch corresponding to small values of
k reaches larger values ofk such that the above expansion for small _:ceases to be valid as well.

These two branches eventually intersect, restoring a region of stability for a range of negative

values of A_. This development is illustrated in figures 4(a)--(f), which were obtained directly

from the exact roots of the cubic equation (86b) with respect to k (for comparison, we also

indicate the asymptotic representation for the upper branch corresponding to one- and two-term

truncations of equation (87)). We observe that after the two pulsating branches intersect (as,

for example, in figures 4(c)-(e)), there exist two critical values of/_ corresponding to the onset

of pulsating instability at corresponding critical values of/_, or equivalently, A_. That is, in
this range of temperature sensitivities, a pulsating hydrodynamic instability occurs for either

sufficiently small or sufficiently large negative values of Ap as either the left or right (upper or

lower in the rotated frame of reference) stability boundary is crossed. As ,_o decreases further,

the separated branches move further apart until ultimately, in the limit/_o _ 0, we recover

from equations (86) the two roots b = 0 and 1 corresponding to the cellular (Ap = -p*/2)

and pulsating (Ap = -p*) stability boundaries in the present (k _ O(eJ/2)) wavenumber
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regime. Thus, as the temperature-sensitivity parameter At decreases to small values on the

scale Ao/Ap _ O(_ -1/2) '_ 50, the region of hydrodynamic stability depicted in figure 1 is

recovered.

8. Summary

The present work has continued the formal asymptotic treatment of hydrodynamic instability

in liquid-propellant combustion based on a generalized Landau/Levich model that allows for

a dynamic dependence of the burning rate on local pressure and temperature perturbations.

The focus in the present study was on the effects of thermal coupling, represented by non-

zero values of an appropriately defined temperature-sensitivity parameter At, on the nature

of a pulsating stability boundary that exists for negative values of a corresponding pressure-

sensitivity parameter Ap. Again exploiting the smallness of the gas-to-liquid density ratio

p, which provides the underlying basis for the asymptotic treatment of the stability problem,

it was shown that for sufficiently large values of At, the pulsating boundary possesses a

turning point that renders steady, planar burning intrinsically unstable for sufficiently small

wavenumber perturbations. As this parameter decreases, the stable region re-emerges such that

in the limit that At vanishes, the original separated pulsating and cellular stability branches

are recovered. The evolution of the pulsating boundary between these two structures was

shown to occur on an intermediate wavenumber scale relative to the inner, outer and far outer

wavenumber scales that emerge in the asymptotic limit of small density ratios in the absence

of thermal coupling. Values of the ratio Ao/Ap over which this evolution occurs were shown

to be roughly of the order of the overall activation energy, suggesting that a pulsating, rather

than the classical Landau (cellular), form of hydrodynamic instability may be the more likely

manifestation of hydrodynamic instability in at least some types of liquid propellants.
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